A Family of Perfect Factorisations of Complete Bipartite Graphs
نویسندگان
چکیده
A 1-factorisation of a graph is perfect if the union of any two of its 1-factors is a Hamiltonian cycle. Let n=p for an odd prime p. We construct a family of (p−1)/2 non-isomorphic perfect 1-factorisations of Kn, n. Equivalently, we construct pan-Hamiltonian Latin squares of order n. A Latin square is pan-Hamiltonian if the permutation defined by any row relative to any other row is a single cycle. © 2002 Elsevier Science (USA)
منابع مشابه
On the perfect 1-factorisation problem for circulant graphs of degree 4
A 1-factorisation of a graph G is a partition of the edge set of G into 1factors (perfect matchings); a perfect 1-factorisation of G is a 1-factorisation of G in which the union of any two of the 1-factors is a Hamilton cycle in G. It is known that for bipartite 4-regular circulant graphs, having order 2 (mod 4) is a necessary (but not sufficient) condition for the existence of a perfect 1-fact...
متن کاملPerfect Factorisations of Bipartite Graphs and Latin Squares Without Proper Subrectangles
A Latin square is pan-Hamiltonian if every pair of rows forms a single cycle. Such squares are related to perfect 1-factorisations of the complete bipartite graph. A square is atomic if every conjugate is pan-Hamiltonian. These squares are indivisible in a strong sense – they have no proper subrectangles. We give some existence results and a catalogue for small orders. In the process we identif...
متن کاملMETA-HEURISTIC ALGORITHMS FOR MINIMIZING THE NUMBER OF CROSSING OF COMPLETE GRAPHS AND COMPLETE BIPARTITE GRAPHS
The minimum crossing number problem is among the oldest and most fundamental problems arising in the area of automatic graph drawing. In this paper, eight population-based meta-heuristic algorithms are utilized to tackle the minimum crossing number problem for two special types of graphs, namely complete graphs and complete bipartite graphs. A 2-page book drawing representation is employed for ...
متن کاملMixed cycle-E-super magic decomposition of complete bipartite graphs
An H-magic labeling in a H-decomposable graph G is a bijection f : V (G) ∪ E(G) → {1, 2, ..., p + q} such that for every copy H in the decomposition, ΣνεV(H) f(v) + ΣeεE(H) f(e) is constant. f is said to be H-E-super magic if f(E(G)) = {1, 2, · · · , q}. A family of subgraphs H1,H2, · · · ,Hh of G is a mixed cycle-decomposition of G if every subgraph Hi is isomorphic to some cycle Ck, for k ≥ ...
متن کاملBalanced Degree-Magic Labelings of Complete Bipartite Graphs under Binary Operations
A graph is called supermagic if there is a labeling of edges where the edges are labeled with consecutive distinct positive integers such that the sum of the labels of all edges incident with any vertex is constant. A graph G is called degree-magic if there is a labeling of the edges by integers 1, 2, ..., |E(G)| such that the sum of the labels of the edges incident with any vertex v is equal t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Comb. Theory, Ser. A
دوره 98 شماره
صفحات -
تاریخ انتشار 2002